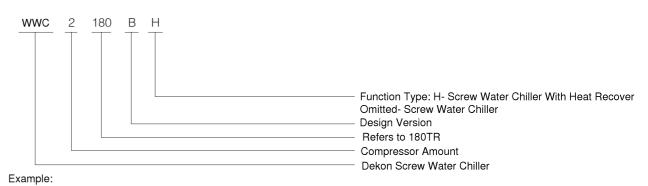


Ningbo Dekon Refrigeration Equipment Co., Ltd, a large-scale industry and trade integrated company, is one of the leading manufacture and supplier for air conditioner products and ventilation systems in China. Products focus on air cooled or water cooled chiller; air handling units; water fan coil units; VRF air conditioner; light commercial air conditioner and special function industrial air conditioner.

Designing and manufacturing a wide range of A/C and ventilation products, we can supply models for use in residential apartments, houses, commercial buildings, hotels, shopping malls and public venues. Marketing all series under our proprietary brand "DEKON", we can also complete ODM and OEM orders as per customers' requirements.

DEKON strives for better air in your home, hotel, shopping Center and office buildings. And our aim is to supply our air conditioner product to each corner of the world!


Screw Water Chiller

Unit Instruction

Dekon WWC range is mainly constructed by electrical driven screw compressor, high efficiency heat exchanger and advanced throttle device etc. used to provide cooling capacity for centralize air conditioning and industry.

Unit Nomenclature

WWC 1090B — Dekon Screw Water Chiller, single screw compressor, step control with design version: B, Model Code: 90

WWC 2180BH-U — Dekon Screw Water Chiller, single screw compressor, step control with design version: B, Model Code: 90

a

Unit Features

Easy Flexible Installation & Commissioning

- Piping connection direction can be changed according to the customer requirement.
- To save the customer wiring cost, our unit control box is provided.
- Refrigerant and lubrication oil are provided to the unit in the factory.
- Each part with active connection, easy for maintenance.

High Quality Component

• Expansion Valve,magnetic valve,contator controller etc. are all from European,American and Japanese famous brand, safety and stable performance,accurate controlling.

Perfect Control System

- It applies world class branded PLC controller and user-friendly operation screen.
- It has condition display, parameter setting, capacity fuzzy logic control, faulty information etc.
- Multi-control function, to ensure the unit operating safety and reliable.

Reliable System Protection

- Compressor has applied multiple protection devices in order to avoid rotor jam and motor overheated
- High low pressure, discharge temperature and operating current, water temperature monitoring control are ensuring the unit safe operating
- All the water flow switch, antifreeze protection, low pressure switch and water temperature control devices can eliminate the freezing crack possibility of the evaporator tube.

Twin Compressors Optimize Design

- Provide wider cooling range.
- Compressor is operating in high efficiency section, to improve the part load operation efficiency.
- Standby compressor can improve the stable performance of the unit and extends its lifespan.

Reliable Oil Treatment System

- Oil supply is actuated by differential pressure, no need for oil pump.
- Ompressor internal comes with high efficiency oil separator.

Aesthetics Outlook Structure

- Unit assemble setup is tidy and tight combination with smaller unit volume.
- Aesthetic outlook with unique structure.

Friendly User Setting

- The customer can set the parameters according to the real operation condition hence achieving the best operation performance.
- The setting method is easy and direct.
- Provide several methods for water temperature control.

Single Compressor Technical Parameter

Мо	del-WWC		1050B	1060B	1070B	1080B	1090B	1100B	1110B	1130B	1140B			
		kW	176	215	235	278	320	350	382	455	480			
Coo	ling Capacity	kcal/h	151360	184900	202100	239080	275200	301000	328520	391300	412800			
Inp	out Power	kW	38.8	47.1	51.4	58.5	67.7	73.8	82.2	95.3	100.7			
Rat	ed Current	Α	65	78	87	98	114	124	138	161	170			
Cap	pacity Regula	ating				25%~100	%Stage Contr	ol or Stepless	Control					
Sı	upply Power					380)V/3N~/5	0Hz						
Col	Туре					5-6Unmatchir	ng Gear Type S	Semi Hermetic	Screw Compr	essor				
Compressor	Start U	lp					Υ- Δ							
SSOF	Qty	Set	1	1	1	1	1	1	1	1	1			
Э	Туре					High Efficienc	y Flooded Typ	e Shell and Tu	be Heat Excha	anger				
Evaporator	Water Flow Rate	m ³ /h	30	37	40	48	55	60	66	78	83			
rator	Pressure Drop	kPa	36	48	56	46	43	50	43	53	58			
	Connection	n	DN100	DN100	DN100	DN125	DN125	DN125	DN150	DN150	DN150			
C	Туре			Plate Heat Exchanger										
Condense	Water Flow Rate	m ³ /h	38	46	51	60	69	75	82	98	103			
nser	Pressure Drop	kPa	45	42	58	50	50	54	55	55	60			
	Connection		DN80	DN100	DN100	DN100	DN100	DN100	DN125	DN125	DN125			
<u></u>	Туре						KG5							
	Charged	L	8	14	14	14	14	16	15	18	20			
Re	Туре						R22							
Refrigerant	Charged	kg	35	43	47	55	64	70	76	91	96			
ant	Control Met	hod				Th	ermal Expansi	on Valve						
Ēδ	Length	mm	2800	2850	2850	2850	2880	2880	3050	3050	3050			
Outlook Dimension	Width	mm	750	800	800	800	800	800	850	850	850			
on	Height	mm	1750	1800	1800	1850	1850	1850	2000	2000	2050			
Weight	Transportation Weight	kg	1300	1600	1600	2000	2100	2100	2350	2500	2500			
gh	Operation Weight	kg	1450	1760	1760	2200	2300	2300	2600	2750	2750			

Note:

- 1.Design, manufacture and test comply with GB/T18430.1-2007 criterion.
- 2.Above capacit based on chilled water outlet temperature 7° , cooling water inlet temperature 30° . 3. Please contect Dekon for specific type, and we will do our best to meet customer's requirement.

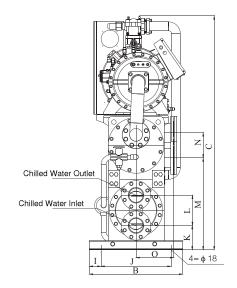
	Chille	ed Water	Coolii	ng Water
Nominal Cooling Capacity	Entering Temperature ($^{\circ}\!$	Leaving Temperature (°C)	Entering Temperature (°C)	Leaving Temperature (°C)
Troning Supusity	_	7	30	_
Safety Operation Range	Leaving Temperature ($^{\circ}\!$	Temperature Difference (°C)	Entering Temperature (°C)	Temperature Difference (°C)
	5~15	2.5~8	19~35	3.5~8

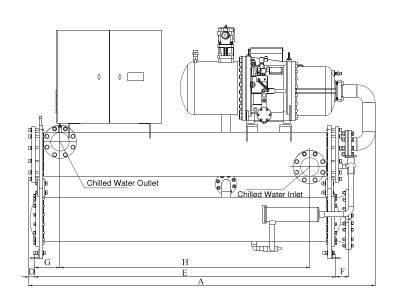
Double Compressor Technical Parameter

	Model-WWC		2100B	2120B	2140B	2160B	2180B	2200B	2220B				
Coo	ling Capacity	kW	352	430	470	556	640	700	764				
C00	ing Capacity	kcal/h	302720	369800	404200	478160	550400	602000	657040				
Inp	ut Power	kW	77.5	94.2	102.8	116.9	135.4	147.6	164.4				
Rat	ed Current	А	130	156	174	196	228	248	276				
Cap	acity Regula	iting	25%~100%Stage Control or Stepless Control										
S	upply Power		380V/3N~/50Hz										
Cor	Туре		5-6Unmatching Gear Type Semi Hermetic Screw Compressor										
Compressor	Start U	р				Υ- Δ							
Sor	Qty	Set	2	2	2	2	2	2	2				
ŵ				High Efficiency Flooded Type Shell and Tube Heat Excha									
Evaporator	Water Flow Rate	m ³ /h	61	74	81	96	110	120	131				
ator	Pressure Drop	kPa	40	50	58	48	45	52	45				
	Connection		DN125	DN125	DN125	DN150	DN150	DN150	DN150				
ဂ္ဂ	Type				F	Plate Heat Exchang	ger						
Condenser	Water Flow Rate	m ³ /h	76	92	101	120	138	151	164				
Iser	Pressure Drop	kPa	45	42	48	50	50	54	55				
	Connection		DN80X2	DN100X2	DN100X2	DN100X2	DN100X2	DN100X2	DN125X2				
<u>o</u>	Туре					KG5							
_	Charged	L	16	28	28	28	28	32	30				
Ref	Туре					R22							
Refrigerant	Charged	kg	35X2	43X2	47X2	55X2	64X2	70X2	76X2				
ant	Control Meth	nod			Т	hermal Expansion	Valve						
<u>₽</u> .0	Length	mm	3200	3200	3200	3200	3200	3400	3650				
Outlook Dimension	Width	mm	1700	1700	1700	1750	1750	1750	1850				
on	Height	mm	2000	2000	2000	2100	2100	2100	2200				
Weight	Transportation Weight	kg	3000	3500	3600	4400	4600	4600	5100				
ight	Operation Weight	kg	3300	3850	4000	4850	5050	5050	5600				

- Note:
 1.Design, manufacture and test comply with GB/T18430.1-2007 criterion.
 2.Above capacit based on chilled water outlet temperature 7 °C, cooling water inlet temperature 30 °C.
 3. Please contect Dekon for specific type, and we will do our best to meet customer's requirement.

	Chille	ed Water	Cooling Water			
Nominal Cooling Capacity	Entering Temperature (°C)	Leaving Temperature(°C))	Entering Temperature (°C)	Leaving Temperature (°C)		
Normal Cooling Capacity	_	7	30	-		
Safety Operation Range	Leaving Temperature (°C)	Temperature Difference (°C)	Entering Temperature (°C)	Temperature Difference (°C)		
- analy epotation manage	5~15	2.5~8	19~35	3.5~8		

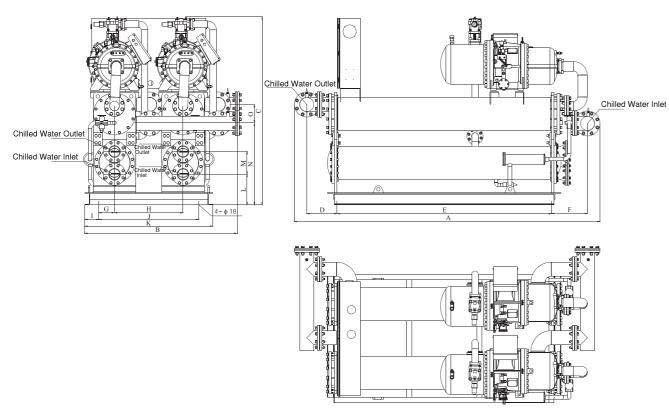

Single Compressor Capacity Correction Table


Model	Chilled	Cod	oling Capacity	(kW)		Input Power (kW)				
	Water Inlet		hilled Water L	eaving Temp	erature	Chille	ed Water Leav	ing Temperati	ure	
WWC	Temperature	5℃	7℃	9℃	11℃	5℃	7℃	9℃	11℃	
	28℃	166	180	194	209	37.1	37.7	38.2	38.8	
10500	30℃	163	176	190	204	38.2	38.8	39.3	39.9	
1050B	32℃	159	172	186	199	39.4	40.0	40.6	41.2	
	34℃	155	168	181	195	40.7	41.4	41.9	42.6	
	28℃	203	220	237	255	45.1	45.8	46.4	47.1	
10/00	30℃	199	215	232	249	46.4	47.1	47.8	48.5	
1060B	32℃	194	210	227	244	47.8	48.6	49.2	50.0	
	34℃	190	205	221	238	49.5	50.2	50.9	51.7	
	28℃	222	240	259	279	49.2	50.0	50.7	51.4	
1070B	30℃	217	235	254	273	50.6	51.4	52.1	52.9	
10706	32℃	212	230	248	266	52.2	53.0	53.7	54.5	
	34℃	207	224	242	260	54.0	54.8	55.6	56.4	
	28℃	263	284	307	330	56.0	56.9	57.7	58.5	
1080B	30℃	257	278	300	322	57.6	58.5	59.3	60.2	
10000	32℃	251	272	293	315	59.4	60.3	61.2	62.1	
	34℃	245	265	286	307	61.4	62.4	63.2	64.2	
	28℃	303	327	353	379	64.8	65.8	66.7	67.7	
1090B	30℃	296	320	346	371	66.7	67.7	68.6	69.7	
10700	32℃	289	313	338	363	68.8	69.8	70.8	71.8	
	34℃	282	305	329	354	71.1	72.2	73.2	74.3	
	28℃	331	358	386	415	70.7	71.7	72.7	73.8	
1100B	30℃	324	350	378	406	72.7	73.8	74.8	75.9	
11000	32℃	316	342	369	397	74.9	76.1	77.2	78.3	
	34℃	309	334	360	387	77.5	78.7	79.8	81.0	
	28℃	361	390	422	453	78.7	79.9	81.0	82.2	
1110B	30℃	353	382	413	443	81.0	82.2	83.4	84.6	
11100	32℃	345	373	403	433	83.5	84.7	85.9	87.2	
	34℃	337	364	393	422	86.3	87.6	88.9	90.2	
	28℃	430	465	502	539	91.2	92.6	93.9	95.3	
1130B	30℃	421	455	491	528	93.9	95.3	96.6	98.1	
11000	32℃	411	445	480	516	96.8	98.3	99.6	101.1	
	34℃	401	434	468	503	100.1	101.6	103.0	104.5	
	28℃	454	491	530	569	96.4	97.9	99.3	100.7	
1140B	30℃	444	480	518	557	99.2	100.7	102.1	103.6	
11400	32℃	434	469	506	544	102.3	103.8	105.3	106.8	
	34℃	423	457	494	531	105.7	107.3	108.8	110.5	

Double Compressor Capacity Correction Table

Model	Chilled	Co	ooling Capacit	y (kW)		Input Power (kW)				
WWC	Water Inlet		Chilled Water	Leaving Tem	perature	Chi	lled Water Lea	aving Tempera	ature	
VVVO	Temperature	5℃	7℃	9℃	11℃	5℃	7℃	9℃	11℃	
	28℃	333	360	389	417	74.2	75.3	76.4	77.5	
01000	30℃	326	352	380	408	76.3	77.5	78.6	79.7	
2100B	32℃	318	344	371	399	78.7	79.9	81.0	82.2	
	34°C	310	335	362	389	81.4	82.6	83.8	85.0	
	28℃	407	439	475	510	90.2	91.6	92.8	94.2	
2120B	30℃	398	430	464	499	92.8	94.2	95.5	96.9	
2120B	32℃	389	420	454	487	95.7	97.1	98.5	99.9	
	34℃	379	410	443	475	98.9	100.4	101.8	103.3	
	28℃	444	480	519	557	98.4	99.9	101.3	102.8	
01.400	30℃	435	470	508	545	101.3	102.8	104.2	105.8	
2140B	32℃	425	459	496	533	104.4	106.0	107.5	109.1	
	34℃	414	448	484	520	107.9	109.6	111.1	112.8	
	28℃	526	568	614	659	111.9	113.6	115.2	116.9	
01/05	30℃	514	556	600	645	115.1	116.9	118.5	120.3	
2160B	32℃	502	543	587	630	118.7	120.5	122.2	124.0	
	34℃	490	530	572	615	122.7	124.6	126.4	128.2	
	28℃	605	654	706	759	129.6	131.6	133.5	135.4	
01000	30℃	592	640	691	742	133.4	135.4	137.3	139.3	
2180B	32℃	578	625	675	725	137.5	139.6	141.6	143.6	
	34℃	564	610	659	708	142.2	144.3	146.4	148.5	
	28℃	662	715	773	830	141.3	143.5	145.5	147.6	
00000	30℃	648	700	756	812	145.4	147.6	149.7	151.9	
2200B	32℃	633	684	739	793	149.9	152.2	154.3	156.6	
	34℃	617	667	720	774	155.0	157.3	159.5	161.9	
	28℃	722	781	843	906	157.4	159.8	162.0	164.4	
00000	30℃	707	764	825	886	161.9	164.4	166.7	169.2	
2220B	32℃	690	746	806	866	167.0	169.5	171.9	174.4	
	34°C	673	728	786	845	172.6	175.3	177.7	180.3	

Single Compressor Dimension



WWC 050B~WWC1140B

Ī	Model						Di	imens	ion n	nm							Connection	
	WWC	А	В	С	D	Е	F	G	Н	I	J	K	L	М	Ν	0	Evaporator	Condenser
	1050B	2800	750	1750	66	2380	331	180	2020	50	650	206.5	160	648	163	290	DN100	DN80
	1060B	2850	800	1800	79	2380	341	180	2020	75	650	220	185	700	163	290	DN100	DN100
	1070B	2850	800	1800	79	2380	341	180	2020	75	650	220	185	700	163	290	DN100	DN100
	1080B	2850	800	1850	79	2380	341	180	2020	75	650	220	185	712	192	310	DN125	DN100
	1090B	2880	800	1850	79	2380	341	180	2020	75	650	220	185	712	192	310	DN125	DN100
	1100B	2880	800	1850	79	2380	341	180	2020	75	650	220	185	712	192	310	DN125	DN100
	1110B	3050	850	2000	92	2580	341	200	2180	75	700	231	215	787	218	330	DN150	DN125
	1130B	3050	850	2000	92	2580	341	200	2180	75	700	231	215	787	218	330	DN150	DN125
	1140B	3050	850	2050	92	2580	341	200	2180	75	700	231	215	787	218	330	DN150	DN125

Double Compressor Dimension

WWC 2100B~WWC 2220B

Model							Dimen	sion n	nm							Connection	
WWC	А	В	С	D	Е	F	G	Н	I	J	K	L	М	Ν	0	Evaporator	Condenser
2100B	3200	1700	2000	240	2240	360	125	740	250	950	1450	346.5	160	768	173	DN125	DN80X2
2120B	3200	1700	2000	240	2240	360	125	740	250	950	1450	360	185	768	173	DN125	DN100X2
2140B	3200	1700	2000	240	2240	360	125	740	250	950	1450	360	185	768	173	DN125	DN100X2
2160B	3200	1750	2100	345	2240	445	125	740	250	950	1450	360	185	852	192	DN150	DN100X2
2180B	3200	1750	2100	345	2240	445	125	740	250	950	1450	360	185	852	192	DN150	DN100X2
2200B	3400	1750	2100	345	2240	445	125	740	250	950	1450	360	185	852	192	DN150	DN100X2
2220B	3650	1850	2200	345	2440	445	110	780	280	1000	1560	371	215	928	218	DN150	DN125X2

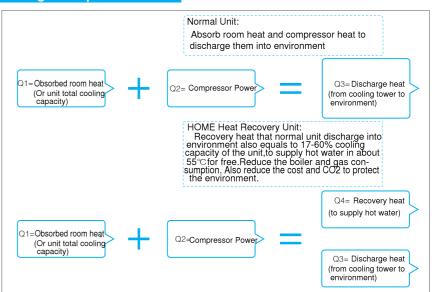
Screw Water Chiller With Heat Recover

Unit Instruction

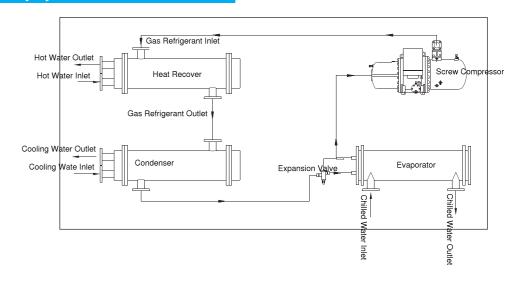
WWC serie of Screw Water Chiller With Heat Recover is designed on the base of Screw Water Chiller. This unit collects part heat from cooling process to provide chilled water, at the same time it offords hot water. Generally, it can use 15%-80% condenser heat, hot water temperature can reach 55 °C. Unit's cooling efficiency can increase 5% when heat recovery. This unit is widely used in hotel, restaurant, school, theater, commercial center, office block etc.

Unit Features

Energy Saving and Environment Friendly--- Unit collects the condenser heat to heat water without energy consumption or any pollution.


Safety and Reliable--- No gas or boiler, water and electric are absolutly sepearated, hence, there is no explodtion, poisoning or electric leakage.

Economy and Fashion--- Use heat recovery, no cost to have hot water, enter into ecomomized society.


Low Operation Cost--- It can improve unit's working condition when heat recovery,improve operation efficiency, decrease operation cost.

Intelligent Control--- All controlled by microcomputer,to realize remote or centralized control, saving management cost.

Heat Recovery Working Principle

Heat Recovery System Process

Single Compressor Technical Parameter

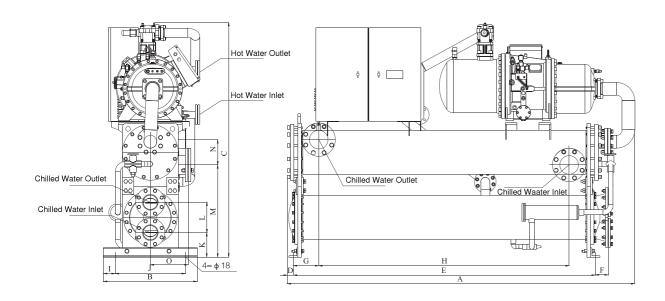
	Model-WWC		1050BH	1060BH	1070BH	1080BH	1090BH	1100BH	1110BH	1130BH	1140BH	
		kW	176	215	235	278	320	350	382	455	480	
Coo	ling Capacity	kcal/h	151360	184900	202100	239080	275200	301000	328520	391300	412800	
Heat F	Recovery Capacity	kW	52	65	70	82	96	105	115	136	144	
Inp	ut Power	kW	38.8	47.1	51.4	58.5	67.7	73.8	82.2	95.3	100.7	
Rat	ed Current	Α	65	78	87	98	114	124	138	161	170	
Cap	acity Regula	ting				25%~100	%Stage Contro	ol or Stepless (Control			
S	upply Power		380V/3N~/50Hz									
Cor	Туре			5-6Unmatching Gear Type Semi Hermetic Screw Compressor								
Compressor	Start Up						Υ- Δ					
ssor	Qty	Set	1	1	1	1	1	1	1	1	1	
Ш	Туре				Н	ligh Efficiency	Flooded Type	Shell and Tube	Heat Exchan	ger		
Evaporator	Water Flow Rate	m ³ /h	30	37	40	48	55	60	66	78	83	
orato	Pressure Drop	kPa	36	48	56	46	43	50	43	53	58	
٦	Connection		DN100	DN100	DN100	DN125	DN125	DN125	DN150	DN150	DN150	
	Туре				ŀ	High Efficiency	Flooded Type	Shell and Tub	e Heat Exchar	nger		
Cond	Water Flow Rate	m ³ /h	38	46	51	60	69	75	82	98	103	
Condenser	Pressure Drop	kPa	45	42	48	50	50	54	55	55	60	
¥	Connection		DN80	DN100	DN100	DN100	DN100	DN100	DN125	DN125	DN125	
Ī	Туре					Pla	te Heat Exchar	nger				
Heat Recover	Water Flow Rate	m ³ /h	9	11	12	14	17	18	20	23	25	
leco,	Pressure Drop	kPa	62	62	62	62	62	62	62	62	62	
ver	Connection		R2	R2	R2	R2	R2	R2-1/2	R2-1/2	R2-1/2	R2-1/2	
<u></u>	Туре						KG5					
	Charged	L	8	14	14	14	14	16	15	18	20	
Refr	Туре						R22					
Refrigerant	Charged	kg	35	43	47	55	64	70	76	91	96	
ant	Control Meth	nod				The	ermal Expansio	on Valve				
Die Die	Length	mm	2800	2850	2850	2850	2880	2880	3050	3050	3050	
Outlook Dimension	Width	mm	750	800	800	800	800	800	850	850	850	
	Height	mm	1750	1800	1800	1850	1850	1850	2000	2000	2050	
Weight	Transportation Weight	kg	1300	1600	1600	2000	2100	2100	2350	2500	2500	
ght	Operation Weight	kg	1450	1760	1760	2200	2300	2300	2600	2750	2750	
Note												

- Note: 1.Design, manufacture and test comply with GB/T18430.1-2007 criterion. 2.Above capacit based on chilled water outlet temperature 7 $^{\circ}$ C, cooling water inlet temperature 30 $^{\circ}$ C.
- 3. Please contect Dekon for specific type, and we will do our best to meet customer's requirement

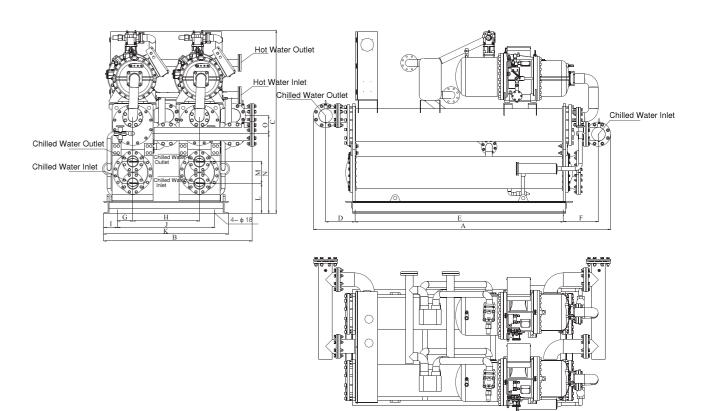
	Chille	d Water	Coolii	ng Water
Nominal Cooling Capacity	Entering Temperature (°C)	Leaving Temperature(°C)	Entering Temperature (°C)	Leaving Temperature (°C)
Nominal Gooling Gapacity	_	7	30	_
Safety Operation Range	Leaving Temperature (°C)	Temperature Difference (°C)	Entering Temperature (°C)	Temperature Difference (°C)
- surely - periodical realigo	5~15	2.5~8	19~35	3.5~8

Double Compressor Technical Parameter

М	odel-WWC		2100BH	2120BH	2140BH	2160BH	2180BH	2200BH	2220BH				
0	l' O 'I	kW	352	430	470	556	640	700	764				
C00	ling Capacity	kcal/h	302720	369800	404200	478160	550400	602000	657040				
Heat I	Recovery Capacity	kW	105	129	141	165	192	210	229				
Inp	ut Power	kW	77.5	94.2	102.8	116.9	135.4	147.6	164.4				
Rat	ed Current	Α	130	156	174	196	228	248	276				
Cap	acity Regula	ting			25%	~100%Stage Contr	ol or Stepless Con	trol					
S	upply Power		380V/3N~/50Hz										
Con	Туре				5-6Unmat	ching Gear Type S	emi Hermetic Scre	w Compressor					
Compressor	Start Up	1				Υ- Δ							
SSOT	Qty	Set	2	2	2	2	2	2	2				
m	Туре				High Efficie	ncy Flooded Type	Shell and Tube He	eat Exchanger					
vapo	Water Flow Rate	m ³ /h	61	74	81	96	110	120	131				
Evaporator	Pressure Drop	kPa	40	50	58	48	45	52	45				
٦	Connection		DN125	DN125	DN125	DN150	DN150	DN150	DN150				
	Туре				High Effici	ency Flooded Type	Shell and Tube H	eat Exchanger					
Condenser	Water Flow Rate	m ³ /h	76	92	101	120	138	151	164				
ense	Pressure Drop	kPa	45	42	48	50	50	54	55				
Ψ	Connection		DN80×2	DN100×2	DN100×2	DN100×2	DN100×2	DN100×2	DN125×2				
Ī	Туре					Plate Heat Excha	nger						
Heat Recover	Water Flow Rate	m ³ /h	18	22	24	28	33	36	39				
eco.	Pressure Drop	kPa	65	65	65	65	65	65	65				
Ver .	Connection	l	DN65	DN65	DN65	DN65	DN65	DN65	DN80				
<u>o</u>	Туре					KG5							
	Charged	L	16	28	28	28	28	32	30				
Ref	Туре					R22							
Refrigerant	Charged	kg	35×2	43×2	47×2	55×2	64×2	70×2	76×2				
ant	Control Method					Thermal Expansion	on Valve						
무은	Length	mm	3200	3200	3200	3200	3200	3400	3650				
Outlook Dimension	Width	mm	1700	1700	1700	1750	1750	1750	1850				
ion	Height	mm	2000	2000	2000	2100	2100	2100	2200				
Weight	Transportation Weight	kg	3000	3500	3600	4400	4600	4600	5100				
ight	Operation Weight	kg	3300	3850	4000	4850	5050	5050	5600				


- 1.Design, manufacture and test comply with GB/T18430.1-2007 criterion.
- 2.Above capacit based on chilled water outlet temperature 7 °C, cooling water inlet temperature 30 °C.
 3. Please contect Dekon for specific type, and we will do our best to meet customer's requirement

	Chille	d Water	Cooli	ng Water
N : 10 " 0 "	Entering Temperature (°C)	Leaving Temperature(°C)	Entering Temperature (°C)	Leaving Temperature (°C)
Nominal Cooling Capacity	-	7	30	_
Safety Operation Range	Leaving Temperature ($^{\circ}\!$	Temperature Difference (°C)	Entering Temperature (°C)	Temperature Difference (°C
, , ,	5~15	2.5~8	19~35	3.5~8

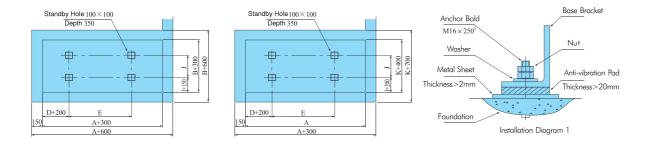

Single Compressor Dimension

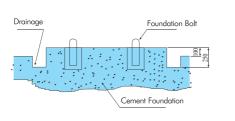
WWC1050BH~WWC1140BH

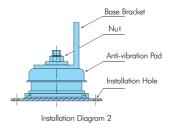
Model WWC	Dimension mm													Connection			
	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Evaporator	Condenser
1050BH	2800	750	1750	66	2380	331	180	2020	50	650	206.5	160	648	163	290	DN100	DN80
1060BH	2850	800	1800	76	2380	341	180	2020	75	650	220	185	700	163	290	DN100	DN100
1070BH	2850	800	1800	76	2380	341	180	2020	75	650	220	185	700	163	290	DN100	DN100
1080BH	2850	800	1850	76	2380	341	180	2020	75	650	220	185	712	192	310	DN125	DN100
1090BH	2880	800	1850	76	2380	341	180	2020	75	650	220	185	712	192	310	DN125	DN100
1100BH	2880	800	1850	76	2380	341	180	2020	75	650	220	185	712	192	310	DN125	DN100
1110BH	3050	850	2000	92	2580	341	200	2180	75	700	231	215	787	218	330	DN150	DN125
1130BH	3050	850	2000	92	2580	341	200	2180	75	700	231	215	787	218	330	DN150	DN125
1140BH	3050	850	2050	92	2580	341	200	2180	75	700	231	215	787	218	330	DN150	DN125

Double Compressor Dimension

WWC2100BH~WWC2220BH


Model	Dimension mm													Connection			
WWC	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Evaporator	Condenser
2100BH	3200	1700	2000	240	2240	360	125	740	250	950	1450	345	160	768	173	DN125	DN80×2
2120BH	3200	1700	2000	240	2240	360	125	740	250	950	1450	345	185	768	173	DN125	DN100×2
2140BH	3200	1700	2000	240	2240	360	125	740	250	950	1450	345	185	768	173	DN125	DN100×2
2160BH	3200	1750	2100	345	2240	445	125	740	250	950	1450	337	185	852	192	DN150	DN100×2
2180BH	3200	1750	2100	345	2240	445	125	740	250	950	1450	337	185	852	192	DN150	DN100×2
2200BH	3400	1750	2100	345	2240	445	125	740	250	950	1450	337	185	852	192	DN150	DN100×2
2220BH	3650	1850	2200	345	2440	445	110	780	280	1000	1560	349	215	928	218	DN150	DN125×2

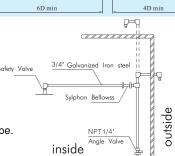

Equipment Room


- The room should have enough space for unit to install and maintain, also, be convience for serviceman
 to approach the chiller or lift the compressor freely. Enough space to pull out the pipe too.
- The room must have the door which is in good installation opening outside and the fire resistance over 1H.
 Make sure that people can thru it safely and freely in emergency.
- The room on the ground should have natural vents whose area is not less than 0.14G (square meter). G stands for chiller refrigent weight(kg). There should be no barries for airflow in surrounding.
- For the baseroom should be setting Mechanical vent whose displacement is not less than 13.88G (L/S). G stands for chiller refrigerant weight. It is recommended to use multispeed fan so as to reduce the displacement in non-emergency. The sunction side or pipes of fan should be near the chiller with appropriate protection.
- Outside the room should have an emergency shut off or power down switch, should have a switch for multispeed fan to control
 emergency operation
- Inflammable and explosive material are not allowed to be stored in the room apart from the refrigerant. But the refrigerant should not be more than 150 KG.
- The room design should be convience for draining. When the safety valve is open, it must be sure that the refrigerant can be discharge successfully.
- The room design should meet the level of local noise. Measures should be taken to prevent vibration transference, when install unit and pipes.

Unit Shifting & Lifting Installation

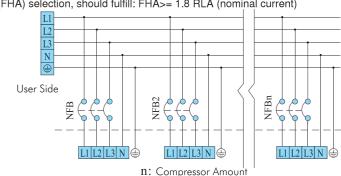
- During unit shifting, please avoid crush onto the floor and directly impact on the unit.
- Avoid refrigerant pipe, insulation and control box to be dented
- Installation Foundation
- 1) Additional consideration must be taken for the unit installation foundation, especially the intermediate floor or rooftop of the unit. Extra attention must also be paid to strength of the floor slab and noise pollution. Please refer to the architect first before the unit installation.
- 2) The foundation must come with drainage for cooling water and chilled water discharge.
- 3) For unit installation foundation and fixing methods, please refer to figures below.

Note: 1) If the fixing method in Installation Diagram 1 is used, the foundation must reserve the base leg bolt installation holes according to the installation diagram.


2) If the fixing method in Installation Diagram 2 is being used, the foundation must prepare the vibration isolator installation bolt holes.

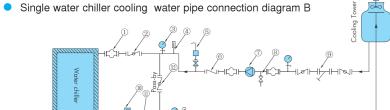
Water Flow Switch Installation

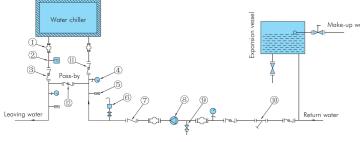
- Water flow switch should be vertically installed in the horizontal pipe section of inlet or outlet pipe.
- When water flow switch is forced to be installed in the horizontal pipe, it should be in the upsteam pipe(avoid installing on downstream pipe).
- There must be a straight pipe whose length is 6 times of pipe's diameter at the direction of water flow switch inlet; at the direction of water flow switch outlet, it should be 4 times. And the water flow switch is not allowed to be installed near to the bend pipe, orifice or valve.
- The end of water flow switch should be ±1/3D away the center line(A is 1/3D-2/3D) to ensure the switch flexiable. The switch's arrow direction should be match with the water flow direction.
- Discharge the air in the water system in order to avoid water flow switch surging.
- Adjust water flow switch to make sure that it is open when water flow rate is less than minimum water flow rate(minimum water flow rate is 60% of the flow rate)
- When water flow rate meets the requirements, water flow switch should maintain in closed condition.


Safety valve Drain Pipe Installation

- Drain pipe diameter should meet the requirement of water flow rate
- Discharge tube for water collection should be equiped.
- The drain pipe out of room shuould be waterproof and be far away from the room. Any barrier is not allowed around the airvent in 1m
- Don't discharge the refrigerant into the room to avoid asphyxia accident(refrigerant is heavier than atmosphere)
- If more than one unit is installed, every unit should have its own discharge tube.

Wiring


- The power supply voltage must be constant during the chiller operates time. Any voltage drop factors should be under consideration. The working voltage should maintain in the nominal range ±10% range. Too high or too low voltage will affect the performance of the unit.
- Ensure that the differential for the phase's voltage must be less than $\pm 2\%$ of nominal value. The maximum and minimum different must be less than 3% of the nominal voltage. This will prevent the compressor from being overload.
- The power supply frequency should be maintained within ±2% of the nominal frequency.
- The minimum starting voltage should be maintained at 85% above the nominal voltage.
- Using extreme cable length will not start up the compressor. Thus, the cable length used must ensure that the two cable terminal voltage differential is less than 2% of the nominal voltage. If the cable length can not be reduced, then bigger size cable diameter should be selected.
- The input power supply wiring connected to the chiller unit must strictly comply with the electrical standard. All wiring and connection must have good electricity insulation. The connection terminals with the unit must be tested with a 500V high resistance meter to check for any current leakage. The minimum resistance is 5MΩ.
- For safety purposes, excellent earth protection setup must follow the electrical standard to avoid current leakage.
- Only allow copper strain cable and 5 cables for wiring connection.
- All wiring and electrical components setup must be executed by the qualified wireman.
- Not allow the put the low voltage control cables (<30V) and high voltage cables (>30V) in the same cable trucking casing
- All connection of wires must be tightened to avoid overheated, electric shock and fire incident. Do not apply exceed force for terminal tightening. Insulated the cable to avoid the insulation and related components loosen.
- To reduce electricity short circuit of electrical wiring, to avoid transformer and electrical wiring equipment damages, and to have a separate control of the module compressors, every compressor wiring must be coupled with a non fuse breaker (NFB), as shown below:
- $\bullet \ \ \, \text{All compressors should apply Y-} \Delta \ \, \text{start-up (according to the customer requirement for soft starter option)}$
- For site wiring current (FHA) selection, should fulfill: FHA >= 1.8 RLA (nominal current)
- For circuit breaker (FHA) selection, should fulfill: FHA>= 1.8 RLA (nominal current)


Water System Piping

- Entering (leaving) piping and valve should be in good insulation to avoid the loss of cooling capacity and condensation
- To ensure water side heat exchanger and piping system have enough water, avoid the heat exchanger high pressure too high water to be freezen inside, low presure too low and bad oil return system because of lacking water, The leaving side of chilled water and cooling water should establish water switch, witch control the system together with compressor
- More than two sets of heat exchanger and chiiller used together, avoid deviation flow, the resistance from chiller to each heat exchanger should be equal. A balanced valve is available if necessary
- If evaporimeter piping is closed loop, in order to remiss the expand and shrink of water, avoid the influence of water pressure, it should have a expansion vessel which should be located on the top of piping system and the water level should be higer than the top of piping at least 1m
- Chilled water pump lies in the entering side of evaporimeter
- For the purpose of not leaving air in the pipe, an auto airvent is required at the top of piping. Further more the horizontal piping system should be lean 1/250
- In order to release the shock which will be passed through the pip into the room, soft connection is required at the side of inlet and outlet system. At the same time, the pipe should be good fixed and afford its weight. The connection of pump and pipe should be soft pipe and rubber, avoid the transferaiong and interference of noise and vibration.
- For the purpose of general checking, the side of entering and leaving water should have thermometer and pressure gage.
- When the unit operation, chilled water flow rate should not less than than nominal water flow rate 60%, in the case of accident
- Chilled water and cooling water pipe accessories should installed the foundation of piping. So that we can seperate it from water pipe easily when checking.
- Single water chiller cooling water pipe connection diagram A

① Soft Connection ② ① ① ② Butterfly valve ③ Presure gage ④ Thermomete
⑤ Auto Airvent ⑥ Check Valve⑦ Pump ⑧ Drain valve
⑤ Y filter ① Water Switch

Diagram A cooling water pipe connection

① Soft Connection ② Water Switch ③①①② Butterfly valve ④ Presure gage ⑤ Thermon ⑥ Auto Airvent ⑦Check Valve ⑧ Pump ⑨ Drain valve ⑩ Y filter

Diagram B chilled water pipe connection

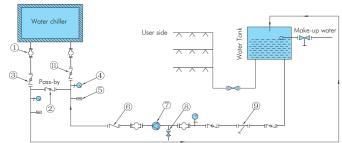


Diagram C hot water pipe connection

hot water system installation

Note: All piping accessories is provided by owner

- Considering the hot water, usage and storage, a temperature-holder vessle and circulating pump must be installed. Be sure that the temperature is 50~60℃
- The insulation layer must add to the water tank, so as to release heat loss. Its volum is designed by project party based on the place, power usage and customer's requirments.
- In order to keep the hot water temperature, circulationg pump must operate for long time and add spare pump
- Hot water in low cost is provided by hot water system whose flow rate, head delivery are designed by requirement. The system is contrilled
 by pressure, operated for 24H. Though the system can offer hot water, it is necessary to add a hot water auxiliary system. Because hot water
 supply is subjected to usage and season
- Heat recovery water-cooled screw flooded chiller hot water pipe connection please refere to Diagram C

Water Quality Treatment

- Poor chilled water and condenser water quality inside the heat exchanger tube will cause fouling. Not only result in reduced heat transfer efficiency and unit performance, but also causes corrosion (scaling) in the heat exchanger tube which result in unit serious problem. Customer should strictly follow GB50050-1995 (Industrial Cycle Cooling Water Teatment Design Specification) standard to carry out water quality treatment. For closed loop chilled water system, it is recommended to use soft water. During unit operating cycle, perform a sample analysis on cooling water (include open type system cooling water). Water quality must satisfy the below requirement:
- If the requirement is not met, should perform water quality treatment. Water quality that is not treated or poorly treated can result in inner tube scaling, friction, corrosion, scaling and growth of mud and algae. If problem is serious, it can result in copper tube cracking. It is recommended to let professional water treatment personnel to carry out treatment. HOME will not be held responsible for problem as a result of poor treatment or untreated cooling water and chilled water usage. And also the same thing for salt water usage.
- In addition, exchanger tube from freeze cracking and this during winter if unit is idle for a long time, water should be drained out. This is in order to avoid heat damaging the unit.

	ITEM	UNIT	MAKE-UP WATER	CONDENSING (CHILLED)WATER	CORROSION	FOULNG
	PH (25°C)		6.5~8.0	6.5~8.0	0	0
∑ E	Conductivity(25°C)	μS/cm	<200	<800	0	0
BASCIC ITEM	CL-	mg CL ⁻ /L	< 50	<200	0	
	SO ₄ -2	mg SO ₄ -2	< 50	<200	0	
	Calcium Carbonate (PH4.8)	mg CaCO ₃ /L	< 50	< 100		0
	Total Hardnes	mg CaCO ₃ /L	< 50	<200		0
Щ	(Fe)	mg Fe/L	< 0.3	<1.0	0	0
REFERENCE	S 2-	mg S ₂ -/L	Not Available	Not Available	0	
	NH ₄ ⁺	mg NH ₄ +/L	< 0.2	<1.0	0	
	SiO ₂	mg SiO ₂ /L	< 0.3	< 50		0

Standard Equipment Detail

Standard Performance Parameter:

Dekon screw water chiller based on chilled water leaving temperature 7 $^{\circ}$ C, cooling water entering temperature 30 $^{\circ}$ C; water side fouling factor is 0.086(m $^{\circ}$. C/KW), refrigerant is R22.If you have special requirments, the parameters will change, hence, please consult our International Department first.

Standard Equipment:

Unit standard equipment includs condensor, evaporator, compressor, oil separator, control panel, throttle, frozen fittings, and pipe fittings. The unit has been finished testing, filled with refrigerant and refrigerant oil, also equiped with water flow rate switch before delivery. Rubber vibration transmission pad can be provided if required.

Spare Parts list:

To meet the customer's requirement, some spare parts are available such as refrigerant oil, dryer, oil filter and refrigerant.